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Interest in the heavy fermion metals has motivated us to examine the quantum phases and their Fermi
surfaces within the Kondo lattice model. We demonstrate that the model is soluble asymptotically exactly
in any dimension d > 1, when the Kondo coupling is small compared with the RKKY interaction and in
the presence of antiferromagnetic ordering. We show that the Kondo coupling is exactly marginal in the
renormalization group sense, establishing the stability of an ordered phase with a small Fermi surface
AFS. Our results have implications for the global phase diagram of the heavy fermion metals, suggesting a
Lifshitz transition inside the antiferromagnetic region and providing a new perspective for a Kondo-
destroying antiferromagnetic quantum critical point.
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There is a growing list of materials in which quantum
criticality may have a strong influence on their electronic
and magnetic properties. A basic question is whether
quantum criticality can be adequately described in terms
of order-parameter fluctuations, or if inherently quantum
effects must be incorporated. It is fortunate that the issue
can be studied in heavy fermion metals [1,2]. These sys-
tems involve the Kondo effect which, via the Kondo singlet
formation, is an inherently quantum property. Indeed, the
discussion here has centered on whether or not the Kondo
entanglement energy scale collapses at the antiferromag-
netic quantum critical point (QCP). If the Kondo scale re-
mains finite, the QCP is of the spin-density-wave (SDW)
type [3–5]. If it collapses, new types of theory [6–9]—
such as the local quantum criticality—are needed.

To understand the QCPs, it is instructive to elucidate the
proximate quantum phases. The ordered phase involved in
the SDW QCP is expected to be an antiferromagnet whose
Fermi surface incorporates both the conduction electrons
and local moments; such a Fermi surface is called ‘‘large’’
and the corresponding phase is named AFL. For a Kondo-
destroying QCP, on the other hand, it must be an AFS
phase, whose Fermi surface is ‘‘small’’ in the sense that
it encloses only the conduction electrons. Experimentally,
evidence exists from de Haas–van Alphen (dHvA) mea-
surements for the AFS phase [10,11] and, moreover, there
are also indications [12,13] from Hall effect and dHvA for
a direct transition from the AFS phase to PML, a paramag-
netic metal phase with a large Fermi surface. Theoretically,
however, whether the AFS is a stable phase of the Kondo
lattice with spin-rotational invariance has not been previ-
ously established in dimensions higher than one. In this
Letter, we answer the question in the affirmative for the
model with SU(2) spin symmetry. Our results are asymp-
totically exact, something that is ordinarily difficult to
achieve for any correlated-electron model in more than
one dimension.

We consider the Kondo lattice model:

 H �H f �H c �H K (1)

Here, H c �
P

~k�� ~k 
y
~k�
 ~k� describes a band of free

conduction c electrons, with a bandwidth W. For sim-
plicity, we will consider the electron concentration, x
per site, to be such that the Fermi surface of H c alone
does not touch the antiferromagnetic zone boundary.
H K �

P
iJK ~Si � ~sc;i specifies the Kondo interaction of

strength JK; here the conduction-electron spin ~sc;i �
1
2

P
��0 

y
�;i ~���0 �0;i, where ~� is the vector of Pauli matrices.

Finally, H f �
1
2

P
ijIij ~Si � ~Sj is the magnetic Hamiltonian

for the spin- 1
2 f moments ~Si, for which there is one per site.

The strength of the exchange interactions Iij is character-
ized by, say, the nearest neighbor value I.

QNL�M representation of the Kondo lattice.—We fo-
cus on the parameter region with JK � I� W. Here, it is
appropriate to expand around the limit JK � 0, where the
local-moment and conduction-electron components are
decoupled. We will consider, for simplicity, square or cubic
lattices, although our results will be generally valid pro-
vided that the ground state is a collinear antiferromagnet.
H f can be mapped to a quantum nonlinear sigma model
(QNL�M) by standard means [14,15]. The low-lying ex-
citations are concentrated in the momentum space near
~q � ~Q (the staggered magnetization) and near ~q � ~0 (the
total magnetization being conserved):

 2 ~Si ! �~x ~n� ~x; ��
������������������������������������
1� �2ad ~L� ~x; ��	2

q
� 2ad ~L� ~x; �� (2)

where ~x labels the position, �~x � 
1 on even and odd
sites, and a is the lattice constant. The linear coupling ~n �
~sc cannot connect two points on the Fermi surface and is
hence unimportant for low-energy physics (such a kine-
matic constraint has appeared in other contexts, e.g.,
Ref. [16]); see Fig. 1(b). The Kondo coupling is then
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replaced by an effective one, ~S � ~sc ! ad ~L � ~sc, corre-
sponding to forward scattering for the conduction elec-
trons; see Fig. 1(a).

The mapping to the QNL�M can now be implemented
by integrating out the ~L field. The effective action is
 

S � SQNL�M � SBerry � SK � Sc

SQNL�M �
c

2g

Z
ddx d�

�
�r ~n� ~x; ��	2 �

�
@ ~n� ~x; ��
c@�

�
2
�

SK � �
Z
ddxd�� ~sc� ~x; �� � ~’� ~x; ��	

Sc �
Z
ddK d"

X
�

 y�� ~K; i"��i"� �K� �� ~K; i"�

� �2
Z
 4

(3)

where �K � vF�K � KF�. The Berry phase term for the ~n
field, SBerry, is not important inside the Néel phase. We
have introduced a vector boson field ~’ which is shorthand
for ~n� �@ ~n=@��. The ~n field satisfies the constraint ~n2 �
1, which is solved by ~n � � ~�; ��, where ~� labels the
Goldstone magnons and � �

���������������
1� ~�2
p

is the massive field.
We will consider the case of a spherical Fermi surface;
since only forward scattering is important, our results will
apply for more complicated Fermi-surface geometries. The
parameters for the QNL�M will be considered as phe-
nomenological [15], though they can be explicitly written
in terms of the microscopic parameters. The effective
Kondo coupling � � iJK=�4dIa

d�.
Renormalization group analysis-tree level.—We now

carry out a renormalization group (RG) analysis of the
effective action. We will describe the d � 2 case for the
most part, but our conclusions remain valid for any other
d > 1 dimensions. Our analysis involves a combination of
the bosonic RG for the QNL�M [15,17,18] and the fermi-
onic RG [19]. (We note in passing that a combined bosonic
or fermionic RG has been used in the context of several
other problems [20,21]). Without loss of generality, we
take the ultraviolet energy cutoffs for the fermions (�f)
and bosons (�b) to be ��f �b. Unless otherwise

specified, the variables ( ~q, !) belong to bosonic fields,
while ( ~K, ") belong to fermionic fields, with ~K measured
from the Brillouin zone center and k � K � KF is relative
to the Fermi surface. Under scaling, !! s!, "! s",
~q! s ~q, and k! sk. The fermionic kinetic term specifies
[19] that � � ~K; "�	 � � 3

2 .
For the QNL�M, we write ~n� ~x; �� � ���� ~x; ��;

��� ~x; ��;
������������������������������
1� �2

� � �
2
�

q
	, and define the composite vec-

tor boson field ~’ by

 ~’� ~x; �� � ~n� ~x; �� � _~n� ~x; ��

�

1
� �� _�� � _������ � ���� _���

1
� � _�� � _������ � ���� _���

_���� � �� _��

0
B@

1
CA (4)

The square-root factors can be expanded, for ex-

ample 1
� � �1=

������������������������������
1� �2

� � �
2
�

q
� � 1� 1

2 ��
2
� � �

2
�� �

3
8 ��

2
� � �

2
��

2 � � � � . The scaling dimensions are
� ~’� ~x; ��	 � 1 and � ~’� ~q; !�	 � �d, while �g	 � 1� d.
Note that, in order for the boson-fermion coupling term
to satisfy momentum conservation, the relative angle
(which does not appear in the measure) between ~K and
~K � ~q also needs to scale [20]. Based on all these, the

scaling dimension of the Kondo interaction term
�ddKd"ddqd! y�� ~K � ~q; "�!� 	� ~K;!� ~’� ~q; !�	, is
1� 1� d� 1� 2�� 3

2� � d � 0. We reach the important
conclusion that ��	 � 0: at the tree level, the Kondo cou-
pling is marginal in arbitrary spatial dimensions.

Renormalization group analysis-one loop.—The Kondo
interaction contains longitudinal and spin-flip terms: SK �
�z � �?. It will be convenient to rescale � �

���
g
p

~�, and
the free-field part of the QNL�M becomes SQNL�M �

c
2 �R

ddx d��@ ~�� ~x; ��	2. There are an infinite number of in-

FIG. 1. With the Fermi surface (FS) of the conduction-electron
component not touching the antiferromagnetic zone boundary,
only the uniform component ( ~q � 0) of the local moments can
interact with two states near the FS, as shown in (a). The linear
coupling involving the staggered component, ~n � ~sc, is not kine-
matically favorable, as shown in (b).

FIG. 2. The Feynman rules associate wavy lines with magnons
( ~� fields), and solid straight lines with itinerant electrons ( 
fields). A slash through a boson line indicates a time derivative
(i.e., _~�). (a) Represents the four diagrams in �z. (b) Describes
the infinite number of spin-flip vertices �? involving an odd
number of magnons.
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teraction vertices involving an increasing number of ~�
fields, always coupled to exactly two fermion fields; see
Fig. 2. However, we only need to consider one representa-
tive vertex and all its loop corrections; other vertices
renormalize in the same way, as dictated by symmetry
[in a way similar to the NL�M itself (Ref. [18], p. 343)].

We describe in some detail one example of a one-loop
correction, that of ���1�z shown in Fig. 3(a). Other correc-
tions are of a similar form, and the conclusions are the
same. Summing over the Matsubara frequency leads to
 

���1�z � ~q; i!; ~P; ipl� � g2�2
?�zi!�

�Z
inner shell


�1�z

�
1

2

Z
inner�outer shells


�2�z

�
(5)

where
 


�1�z �
w2
P�K��2ipl� i!��K��K�q�

��ipl��K�2�w2
P�K	��ipl� i!��K�q�

2�w2
P�K	


�2�z �
1

�ipl�wP�K��K	
wP�K

�ipl� i!�wP�K��K�q	
: (6)

Here, ( ~P, ipl) label the energy momentum of one of the
two external fermions, while ( ~q, i!) denote the energy-
momentum transfer among the two external bosons (or,
equivalently, that of the two external fermions). The mag-
non energy is wP�K � cj ~P� ~Kj.

We can now consider the kinematics of these one-loop
corrections. Three momenta, ~P, ~K, and ~q, are involved in
the integrals for ���1�z . The external-fermion momentum ~P
can be set to the Fermi momentum, j ~Pj � KF, since any
difference would be irrelevant in the RG sense. Likewise,
the external-boson momentum transfer ~q can be set to zero.
The fermionic loop momentum ~K is restricted to the inner
and outer shells straddling the Fermi surface: KF ��=s <
j ~Kj<KF �� and KF ��< j ~Kj<KF ��=s, respec-
tively. Finally, the bosonic momentum ~P� ~K must be
contained inside the circle defined by its cutoff �.

These restrictions on ~P and ~K lead to the construction
shown in Fig. 4. The only phase space allowed by momen-
tum conservation is the shaded region in the figure. This
limits the loop integration over ~K to the small angular
interval from ��=KF to ��=KF, and two radial shells
of width d� � ���=s � � logs (where s * 1). A sim-
ple geometric analysis shows that the allowed phase space
(shaded region) is proportional to �2�logs�3=2, therefore
��z / �logs�3=2. The vertex correction is superlinear in
logs, so it does not contribute to the beta function. The
Kondo coupling is still marginal at the one-loop level.

We note that if, instead of eliminating modes within the
momentum shell, we integrate over the entire phase space,
the vertex correction is of the order g2�2

?�z��=KF�. This is
consistent with the vanishing contribution to the beta func-
tion in the low-energy limit.

Finally, there are also vertex corrections due to the
interactions purely among the fermion fields or purely
among the QNL�M fields. The former do not yield loop
corrections in the forward-scattering channel [19]. The
latter are irrelevant since g renormalizes to 0.

Renormalization group analysis-to infinite loops.—The
kinematic arguments so far are similar to what happens to
the renormalization of the forward-scattering interactions
in the pure fermion problem, where momentum conserva-
tion combined with cutoff considerations severely limit the
available phase space [19]. The parallel carries over to the
RG beyond one loop. We decompose the Fermi surface
into N� � �KF=� patches, and rescale the momentum
and energy variables for each patch in terms of �: �" �
"=� and so on. We also absorb a factor �2 into the fermion
field, so that the kinetic term for the fermions becomesPN�
i

R
d2 �ki d �"i 

y
i �i �"i � vF �ki� i. Likewise, we absorb a

factor �5=2 into the ~� field, so that the kinetic part of the
QNL�M is SQNL�M 

R
d2 �qd �!� �q2 � �!2� ~�2. We then

find that the spin-flip Kondo coupling (�?) contains a
factor �1=2, and the longitudinal Kondo coupling (�z)
contains a factor �. In other words, the Kondo couplings

,

FIG. 3. (a) Shows the lowest order corrections to the vertices
�z and �?. (b) Is an example of a class of diagrams that do not
contribute to the beta function.

/

FIG. 4. Kinematics for the momentum-shell RG. Only the
shaded region is integrated over.
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are of the order of �1=
�������
N�

p
��?

P
i

R
’ y and

�1=N���z
P
i

R
’ y , respectively. These extra 1=

�������
N�

p

and 1=N� factors make their contributions negligible to
infinite loops, except for a chain of particle-hole bubbles
(in the spin-flip channel), the lowest order of which is
shown in Fig. 3(b). The latter does not contribute to the
beta function, since the two conduction-electron poles are
located on the same side of the real axis [19].

The Kondo coupling is therefore marginal to infinite
loops. This contrasts to what happens in the single-
impurity Kondo problem. There, the Kondo coupling is
relevant, and flows to infinity, which signifies singlet for-
mation in the ground state and a concomitant Kondo
resonance in the excitation spectrum. In the paramagnetic
phase of the Kondo lattice, the Kondo coupling is believed
to flow to a related strong coupling fixed point where,
again, Kondo resonances are generated and the Fermi
surface becomes large.

In our case, a marginal Kondo coupling implies that
there is no Kondo singlet formation and the Fermi surface
will stay small in the sense defined earlier.

Large N limit.—To see explicitly the small Fermi sur-
face, we turn to a large N generalization (this is different
from the previous N�) of the effective action [22]. The
N ! 1 limit is taken with the spin symmetry of the
conduction electrons enlarged from SU(2) to SU�N�,
and the symmetry of the magnons from O�2� to O�N2-2�.
The effective Kondo coupling is rescaled to �=

����
N
p

.
Leaving details for elsewhere [22], we quote the equation
for the conduction-electron self-energy, �� ~K; �� �R
d ~q�2G’;0� ~q;���G� ~K � ~q; ��, where G’;0� ~q;��� �
hT� _~�� ~q;��� _~�� ~q; 0�iQNL�M, and G� ~K; �� �
�hT�c� ~K; ��cy� ~K; 0�i is the full conduction-electron
propagator. We find that �� ~K;!� � a!� ibj!jdsgn!,
where a, b are constants whose dependence on � has the
first nonvanishing term �2. (When the four-fermion in-
teraction among the  ’s is included, there will be an !2

term added to Im�). It follows from G� ~K;!� �
�!� � ~K ��� ~K;!�	�1 that the Fermi surface is the
same as that of the conduction-electron component alone.
The Fermi surface is indeed small.

We now turn from the asymptotically exact results to
their implications. It is well accepted that two other phases
specified earlier occur in the zero-temperature phase dia-
gram of the Kondo lattice: a paramagnetic phase with a
large Fermi surface, PML, and an antiferromagnetic one
with a larger Fermi surface, AFL. The existence of PML
has been most explicitly seen in the large-N limit of the
SU�N� generalization of the model [23,24] [where
�� ~K;!� � �v��2=�!� ��f� contains a pole and, corre-

spondingly, G� ~K;!� yields a large Fermi surface]. Our
results here demonstrate that the antiferromagnetic part
of the phase diagram in principle accommodates a genuine
phase transition from AFS to AFL. For commensurate

antiferromagnetic ordering (and to order �=W in the in-
commensurate case, where � is the SDW gap of the AFL
phase), this corresponds to a Lifshitz transition with a
change of Fermi-surface topology. Such a transition has
been heuristically discussed in the past [7,9]; our exact
result on the stability of the AFS phase provides evidence
for the existence of this Lifshitz transition.

In addition, the existence of the AFS phase opens the
possibility for a direct quantum transition from the AFS to
the PML phases. For this transition to be continuous, the
quasiparticle residues zS and zL must vanish when the QCP
is approached from the two respective sides. The quantum
critical point is then a non-Fermi liquid with a divergent
effective mass; local quantum criticality [6,7] is one such
example. The results reported here, therefore, provide a
new perspective to view the local quantum criticality.
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