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Motivated by the global phase diagram of antiferromagnetic heavy-fermion metals, we study the Kondo

effect from the perspective of a nonlinear sigma model in the one-dimensional Kondo-Heisenberg model

away from half-filling. We focus on the effects of the instanton configurations of the sigma-model field

and the associated Berry phase. Guided by the results derived using bosonization methods, we demon-

strate that the Kondo-singlet formation is accompanied by an emergent Berry phase. This Berry phase also

captures the competition between the Kondo-singlet formation and spin-Peierls correlations. Related

effects are likely to be realized in Kondo lattice systems in higher dimensions.
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Introduction.—Antiferromagnetic (AFM) heavy-
fermion metals represent a prototype case study for quan-
tum criticality [1]. Considerable theoretical work has em-
phasized the Kondo-breakdown local quantum criticality
[2,3]. Compared with the spin-density-wave picture [4,5],
which is based on the Landau notion of order-parameter
fluctuations, the Kondo breakdown introduces new low-
energy degrees of freedom. The characteristic properties
include, e.g., a jump between large and small Fermi sur-
faces [6,7].

Recently, experiments in YbRh2Si2 that is either doped
[8,9] or pressurized [10] have revealed a rich phase dia-
gram. Under sufficient positive or negative (chemical)
pressure, the Kondo-breakdown point can be separated
from the AFM transition. These results have been inter-
preted in terms of a global phase diagram, which was put
forward several years ago and more extensively discussed
recently [11–13].

The global phase diagram emphasizes the interplay
between two effects. One is the Kondo screening and its
breakdown, and the other the fluctuations in the quantum
magnetism of local moments alone. The relevant zero-
temperature phases can be either AFM or paramagnetic,
and can have ‘‘large’’ or ‘‘small’’ Fermi surfaces
[11–13]. The large and small Fermi surfaces, respectively,
correspond to the cases with Kondo screening and destruc-
tion. These results promise to take the study of heavy-
fermion phase diagram to an entirely new direction [1].

A promising approach to the global phase diagram starts
from the AFM state, using a quantum nonlinear sigma-
model (QNL�M) representation [12,14]. In dimensions
higher than one, the Kondo coupling turns out to be exactly
marginal in the renormalization group (RG) sense, and this
shows a stable AFM phase with Kondo destruction. Such a
phase serves as a basis to describe different types of phase
transitions out of the AFM state [11,12]. The low-energy
physics in the ordered state involves only the smooth
space-time configurations of the sigma-model field n, for
which the spin Berry phase vanishes. In order to access

the Kondo-screened or otherwise paramagnetic phases,
topologically nontrivial configurations of the n field will
also be important; for such configurations, the spin Berry
phase is nonzero.
To gain insight into the effect of the Berry phase on the

zero-temperature phases of Kondo lattice systems, here we
consider the case of AFM spin-1=2 Kondo-Heisenberg
model in one dimension.We use theQNL�M basis to study
the effect of topological spin excitations, with important
guidance provided by the results derived from bosonization
method.We show that, when the conduction electronmoves
in the topologically nontrivial instanton configurations of
the n fields, a Berry phase � term with �c ¼ � arises. The
emergent Berry phase shifts the � term of the spin chain
from � to 0½mod2��, which in turn gives rise to a spin gap
that is characteristic [15–17] of the Kondo-screened state of
the one-dimensional Kondo-Heisenberg lattice. Our results
apply to both the insulating case at half-filling, where they
are consistent with the result of Tsvelik [18], as well as the
metallic case away from half-filling.
Kondo-Heisenberg model and QNL�M mapping.—We

begin with the following one-dimensional Hamiltonian:

H ¼ H0 þ JK
X
i

si � �i þ JH
X
i

�i � �iþ1; (1)

where H0 ¼ �t
P

i;�c
y
i;�ciþ1;� þ H:c:, and the fermion

spins and spin-half local moments are, respectively, de-

scribed by si ¼ 1
2 c

y
i;����ci;�, and �i. The Kondo (JK) and

nearest neighbor (JH) exchange couplings are both anti-
ferromagnetic, and t is the fermion hopping strength.
We will work in the regime JK � JH, t, where
we can use a continuum approximation for the spin chain.
For the latter, we first consider the semiclassical
QNL�M mapping [19], followed by the bosonization
method [20].

In the semiclassical approximation we take �i ¼
ð�1ÞiSnið1� a2L2

i

S2
Þ1=2 þ aLi, where the unit vector

field ni is the staggered magnetization, and Li is a
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canting field that satisfies the constraint ni �Li¼0. After
integrating out Li we obtain the effective action Seff ¼
S½n� þ S0 þ SK, where S0 ¼

R
d2xc s½�0@0 þ v�1@1�c s,

while S½n� and SK, respectively, describe the QNL�M for
the local moments and the Kondo interactions

S½n� ¼ �s

2

Z
d2x

�
ð@1nÞ2 þ 1

c2
ð@0nÞ2

�
þ i�W½n�; (2)

SK ¼
Z

d2x½�be
�i�rj �c e�i2kFrj�5�c � n

þ i�f
�c�0�c � ðn� @0nÞ� þ . . . : (3)

Here the topological term i�W½n� corresponds to the
Berry’s phase due to the instanton configurations of n,
with � ¼ 2�S, and the Pontryagin index W½n� ¼ 1

4� �R
d2xn � ð@xn� @0nÞ counts the winding number of the

instantons. In the semiclassical approximation only the
Berry’s phase term retains the information about the quan-
tized value of the spin. Based on this mapping, Haldane
conjectured that half-integer spin chains characterized by
� ¼ � are gapless, and in contrast the integer spin chains
with � ¼ 2� are gapped [19]. In addition �s ¼ JHS

2a,
c ¼ 2JHSa, respectively, denote the spin stiffness and
spin-wave velocity, v is the Fermi velocity, kF is the
Fermi momentum, and the anticommuting gamma matri-
ces are �0 ¼ 	1, �1 ¼ 	2, and �5 ¼ i�0�1 ¼ �	3, with
	i’s being Pauli matrices. These Pauli matrices operate on
the fermionic spinor c y ¼ ðRy; LyÞ, where R and L are the
right and left moving fields, and �c ¼ c y�0.

The two terms in Eq. (3) with coupling constants �b

and �f, respectively, correspond to the backscattering and

forward scattering interactions between the fermions and
local moments; both are / JK. The ellipsis indicates a four-
fermion interaction term, obtained after integrating out Li,
that is not important for our purpose. The backscattering
term describes the coupling of the staggered magnetization
densities of the electrons and spin chain, and the forward
scattering term describes the coupling of the uniform
magnetization densities. At half-filling, the product of the
exponential phase factors is unity due to the commensura-
bility of the conduction electrons and spin chain, and the
backscattering term contributes as a relevant operator.
Away from half-filling, the product is oscillatory in space,
whichmakes the backscattering term irrelevant and the low-
energy physics is governed by the forward scattering term.

Bosonization results.—Before proceeding with the cal-
culations within the QNL�M approach, we will use the
bosonization method to gain insight into the Kondo-singlet
formation [16,17] and the emergent Berry phase. We show
that the Abelian-bosonization description of the Kondo-
singlet state, when transformed in terms of a non-Abelian
bosonization method, already suggests an emergent Berry
phase.

In the bosonization approach the spin chain is first
described in terms of fermions � with frozen charge

fluctuations, and the Kondo interaction term is expressed as

SK ¼
Z

d2x½�b
�c e�i2kFrj�5�c � ��e�i�rj�5��

þ �f
�c�0�c � ���0���: (4)

Within the Abelian bosonization, the collective charge and
spin fluctuations of the electrons are, respectively, de-
scribed by the bosonic fields ’c, ’s and their correspond-
ing dual fields �c, �s. The spin fluctuations of the local
moments are described by the bosonic field ’
 and its dual
�
. The kinetic energy of the fermions are described in
terms of Gaussian actions involving’c,’s, and’
, and SK
becomes

SK /
Z

d2x½�b cosðð2kF þ �Þrj þ
ffiffiffiffiffiffiffi
2�

p
’cÞ

� ðcos ffiffiffiffiffiffiffi
2�

p
’� � cos

ffiffiffiffiffiffiffi
2�

p
’þ þ 2 cos

ffiffiffiffiffiffiffi
2�

p
��Þ

þ �ff@x’s@x’
 þ cos
ffiffiffiffiffiffiffi
2�

p
��ðcos

ffiffiffiffiffiffiffi
2�

p
’�

þ cos
ffiffiffiffiffiffiffi
2�

p
’þÞg�; (5)

where ’� ¼ ’s � ’
 and �� ¼ �s � �
.
Away from the half-filling, the low-energy physics is

controlled by the forward scattering term that is marginally

relevant [17]. (The cos
ffiffiffiffiffiffiffi
2�

p
�� cos

ffiffiffiffiffiffiffi
2�

p
’� coupling is ir-

relevant and can be ignored.) Since the forward scattering
operators do not couple the charge and spin sectors, the
charge field remains a free field and leads to the metallic
behavior in the charge sector. However, the spin fields still
satisfy one of the following locking conditions:ffiffiffiffiffiffiffi

2�
p

’þ ¼ 2n1�;
ffiffiffiffiffiffiffi
2�

p
�� ¼ ð2n2 þ 1Þ�; (6)ffiffiffiffiffiffiffi

2�
p

’þ ¼ ð2n1 þ 1Þ�; ffiffiffiffiffiffiffi
2�

p
�� ¼ 2n2�; (7)

which signals the Kondo-singlet formation and an
emergent spin gap [16,17,21]. As a result of the Kondo-
singlet formation there is a gapless charge density
wave mode at wave vector 2k�F ¼ 2kF þ �, described by

hN
 � Nsi / cosðð2kF þ �Þrj þ
ffiffiffiffiffiffiffi
2�

p
’cÞ.

The above can be compared with the insulating system
at half-filling, where the backscattering and forward scat-
tering operators are, respectively, relevant and marginally
relevant operators. Consequently [15–17], the low-energy
physics is governed by the backscattering term, a potential
energy of the form N
 �Ns, where Ns;
 are the staggered

magnetization densities. This form implies that the spin
fields will lock into a configuration such that N
 �Ns¼�1.
Combining the energy minimum criterion with the fact that

cos
ffiffiffiffiffiffiffi
2�

p
’� and cos

ffiffiffiffiffiffiffi
2�

p
�� cannot have simultaneous

vacuum expectation values, we find two possibilities for

the charge and spin fields, either with Eq. (6) and
ffiffiffiffiffiffiffi
2�

p
’c¼

2n3�, or with Eq. (7) and
ffiffiffiffiffiffiffi
2�

p
’c¼ð2n3þ1Þ�. The

nonzero hcos ffiffiffiffiffiffiffi
2�

p
’ci causes a charge gap, leading to a

charge insulator behavior. In the spin sector, the above
reveals an important insight, which appears not to have
been appreciated before: the locking conditions for the spin
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bosons in the half-filled insulating case and away-from-
half-filled metallic cases are identical. This insight will be
important in guiding our subsequent analysis of the Berry
phase effect in the QNL�M representation.

To anticipate theQNL�M analysis, we now demonstrate
the relation between the Kondo singlet formation and
Berry phase using the non-Abelian bosonization method
[20]. The spin sector for the electrons and local moments
are described by the SUð2Þ matrix fields Us;
 and the

corresponding SU1ð2Þ Wess-Zumino-Witten (WZW) ac-
tions

Ss;
 ¼ 1

16�

Z
d2xTr½@�Uy

s;
@�Us;
� þ�WZ½Us;
�;

�WZ½Us;
� ¼ �i

24�

Z 1

0
d�

Z
d2x���Tr½��

s;
�
�
s;
�

�
s;
�;

(8)

where �WZ is the topological Wess-Zumino (WZ) term and

��
s;
 ¼ Uy

s;
@�Us;
. For the electrons and local moments

the space-time coordinates are, respectively, described by
(vs;
x0, x1). The topological WZ term is crucial to main-

taining the gapless behavior of the Us;
 fields. The matrix

fields can be decomposed as Us;
 ¼ u0;s;
 þ ius;
 � �,

with u20;s;
 þ u2
s;
 ¼ 1, where u0;s;
 and us;
, respectively,

describe singlet spin-Peierls and staggered magnetization
correlations. The relationship among the non-Abelian and
Abelian bosonization fields are described by

u0;s� iu3;s ¼ e�i
ffiffiffiffiffi
2�

p
�s; u1;s� iu2;s ¼�ie�i

ffiffiffiffiffi
2�

p
�s : (9)

The locking conditions of the Abelian fields, Eqs. (6) and

(7), translate into Us ¼ �Uy

 . Using the property

�WZ½Uy� ¼ ��WZ½U�, we find that the Kondo-singlet
formation is accompanied by the cancellation between
the WZ terms of the spin chain and the electrons. This
leaves an effective matrix sigma model without the topo-
logical term, which is known to be gapped. If the Peierls
type singlet correlation u0 is suppressed, the WZW action
reduces to a QNL�M, and the WZ term transforms into a
topological � ¼ � Berry phase for theQNL�M. Therefore
we anticipate that the Kondo-singlet formation within a
sigma-model approach will be associated with an emergent
� ¼ � Berry phase from the electronic part of the action.

QNL�M at half-filling.—After gaining insight into the
Kondo-singlet formation via bosonization analysis, we turn
to the QNL�M approach. At half-filling the problem can
be solved in an elegant manner due to Tsvelik [18].
Introducing the non-Abelian bosonization field Us for
the conduction electrons, the relevant backscattering term

can be expressed as 4�bus � n cos
ffiffiffiffiffiffiffi
2�

p
’c. The energy

minimization is achieved for us ¼ n,
ffiffiffiffiffiffiffi
2�

p
’c ¼

ð2nþ 1Þ� or us ¼ �n,
ffiffiffiffiffiffiffi
2�

p
’c ¼ 2n�. The conditions

us ¼ �n imply u0;s ¼ 0, and the WZ term becomes

�i�W½n� which cancels the � ¼ � Berry phase term of
the spin chain. Consequently, we obtain charge and spin
gaps. However, this approach does not account for the

forward scattering terms and can not be applied to the
metallic case away from half-filling, where a new treat-
ment is required.
Berry’s phase from non-Abelian chiral anomaly.—We

now analyze the Kondo effect and emergent Berry phase in
the QNL�M representation at arbitrary filling. Based on
the bosonization results, we see that Kondo-singlet forma-
tion is accompanied by the 2k�F charge density wave
oscillation described by hNs � N
i. Therefore in the
sigma-model approach we need to find an appropriate
fermionic basis such that the component of Ns parallel to
n has 2k�F charge oscillation (at half-filling due to com-
mensurability 2k�F charge mode remains gapped).
Recognizing thatNs contains the combination of left and

right moving fields, we anticipate that a spin-dependent
chiral transformation will be needed to describe the appro-
priate fermionic basis. In the following section we demon-
strate that both at and away from half-filling the emergent
Berry’s phase can be calculated by using a non-Abelian
chiral rotation and the associated chiral anomaly [22–24].
In Ref. [24] the non-Abelian chiral rotation technique has
been applied to calculate the Berry phase at half-filling in
the absence of the forward scattering term. However, the
relation between the emergent Berry phase and Kondo-
singlet formation has not been addressed. We consider
this relationship and, in addition, study the forward scatter-
ing term to address the metallic case away from half-filling.
We perform a spin-dependent chiral rotation c !

expði�n � ��5Þ�. The staggered magnetization trans-
forms into

�c e�i2kFrj�5
�

2
c ¼ 1

2
��½� � nð1� cos2�Þn � �

þ i�5 sin2�n�e�i2kFrj�5�: (10)

After taking a dot product with n, we find that only for
� ¼ ��=4, Ns � n demonstrates pure charge density os-
cillations with 2k�F wave vector. Therefore � ¼ �=4 is the
required chiral rotation angle, which removes the spin
dependence of the backscattering term and converts it
into i�b expð�i�rj � 2ikFrj�5Þ ���5�. Therefore at half-

filling, the backscattering term becomes i�b ���5�, and
causes a charge gap. One can also perform a successive
Uð1Þ chiral rotation expð�i �4 �5Þ�, to transform i ���5�

into an ordinary mass term �b ���. However, this is not
necessary for the physics in the spin sector.
Since the functional measure is not invariant under

chiral rotation, we need to find the Jacobian of the trans-
formation which leads to the chiral anomaly terms. After
an explicit calculation detailed in the Supplemental
Material [25], we find the Jacobian

J

�
� ¼ �

4

�
¼ exp

�
�i�W½n� þ

Z
d2x

�
v

4�
ð@1nÞ2

þ ð1� 2�fÞ2
4�v

ð@0nÞ2
��
: (11)
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The Jacobian consists of an emergent � ¼ � Berry phase
term, and two additional terms which renormalize the spin
stiffness and spin-wave velocity of the QNL�M. The
emergent Berry phase cancels the existing � Berry phase
of the spin chain, and renders the sigma model field
gapped. As a result of the �=4 chiral rotation, the spin
sector of the � fermions also becomes gapped. This can be
demonstrated by considering the bosonization of the �
fermions. In the non-Abelian bosonization formulation,
the spin sector of the � fermion does not contain the
topological WZW term, and the matrix sigma model be-
comes gapped. The fermionic action transforms into

Sf ¼
Z

d2x ��

�
��@� þ i

2
���5� � @�n

þ i

2
��� � ðn� @�nÞ � i�f�0�5� � @0n

þ i�be
�ið�þ2kFÞrj�5�5

�
�þ . . . : (12)

Since the n field, and the spin sector of � field are gapped,
the interaction between these fields describes the innocu-
ous fluctuations about Kondo-singlet phase.

To summarize, the spin-dependent chiral rotation by
angle �=4 incorporates the Kondo-singlet formation. In
the metallic case away from half-filling, a � ¼ � Berry
phase emerges as a consequence of chiral anomaly. The
effects of the Berry phase and instantons in the spin sector
turn out to be the same as those at half-filling. The differ-
ence between the two cases exists only in the charge sector,
and the term causing the gap at half-filling no longer
operates away from half-filling.

Competition with spin-Peierls correlations.—The emer-
gent theta term highlights the role of instanton configura-
tions of the n field. We now discuss its connection with the
spin-Peierls order parameter. In the semiclassical language
spin-Peierls order parameter ð�1ÞihSi � Siþ1i corresponds
to the instanton density a2n � ð@xn� @0nÞ. Therefore the
instantons of the sigma model are manifestations of the
competition between the spin Peierls and Néel order. For
the spin one-half case we consider, � ¼ � and the gapless-
ness of the spin chain implies the same power law corre-
lation of the Peierls and the Néel order parameters. The
Kondo-singlet formation is detrimental to both singlet
Peierls and triplet Néel correlations, as the system moves
away from the gapless point; this competition between two
types of singlet correlations is encoded in the emergent �
Berry phase term.

This conclusion demonstrates the effect of the emergent
Berry phase beyond the description of how Kondo-singlet
paramagnetic phase transitions out of a Kondo-breakdown
spin-liquid reference point. The Berry phase also charac-
terizes the competition between the Kondo paramagnet and
Kondo-breakdown spin-Peierls phase. While the Fermi
momenta of the Kondo-singlet paramagnet are large, those
of the spin-Peierls state are small. These paramagnetic

phases and their transitions resemble the paramagnetic
portion of the global phase diagram that has been proposed
for heavy-fermion metals.
In higher dimensions there is a stable Néel ordered AFM

state, and the instantons are suppressed by finite spin stiff-
ness in the magnetically ordered phase. However, in the
quantum disordered region the consideration of the instan-
tons becomes relevant, and the associated Berry phase is
critical in determining the nature of the emergent valence
bond solid phase [26,27]. Therefore, it is conceivable that
Berry phase effects related to what we have considered
here will be important in dimensions higher than one.
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