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We report thermodynamic measurements in a magnetic-field-driven quantum critical point of a
heavy fermion metal, YbRh2Si2. The data provide evidence for an energy scale in the equilibrium
excitation spectrum that is in addition to the one expected from the slow fluctuations of the order
parameter. Both energy scales approach zero as the quantum critical point is reached, thereby
providing evidence for a new class of quantum criticality.

Quantum criticality encodes the strong
fluctuations of matter undergoing a
second-order phase transition at zero

temperature. It underlies the unusual properties
observed in a host of quantummaterials. A basic
question that remains unsettled concerns its
proper theoretical description, which is chal-
lenging because the fluctuations are both collec-
tive and quantum mechanical. One class of
theory, based on the traditional formulation of
classical critical phenomena (1), considers the
fluctuations of a classical variable—Laudau’s
order parameter—in both spatial and temporal
dimensions (2–5). The slowing down of the
order-parameter fluctuations accompanies the
divergence of a spatial correlation length; at each
value of the tuning parameter, the equilibrium
many-body spectrum contains a single-excitation
energy scale, which vanishes at the quantum
critical point (QCP) (6). An unconventional
class of theory (7–9), by contrast, is inherently
quantum mechanical; it explicitly invokes quan-
tum entanglement effects, which are manifested
through vanishing energy scales that are in ad-
dition to the one associated with the slowing
down of order-parameter fluctuations. The na-
ture of quantum criticality can therefore be ex-
perimentally elucidated by determining whether
single or multiple energy scales vanish as the
QCP is reached.

We consider the heavy-fermion metal
YbRh2Si2 (YRS) and show that multiple energy
scales vanish as its QCP is approached and, in
addition, suggest that critical electronic modes
coexist with the slow fluctuations of the mag-
netic order parameter. A direct way to probe
the intrinsic energy scales in the equilibrium

spectrum near a QCP is to measure thermody-
namic properties. Another approach is to
measure the fluctuation spectrum in equilibri-
um, for example by inelastic neutron scatter-
ing experiments. Such equilibrium methods
are in contrast to transport experiments, which
are influenced by electronic relaxational prop-
erties, especially for anisotropic and multi-
band systems.

As extraction of critical energy scales re-
quires measurements through fine steps of the
control parameter, which is nearly impossible
for inelastic neutron scattering, we report here
measurements of thermodynamic properties of
YRS across its magnetic QCP.

We chose to work with the tetragonal
heavy fermion compound YRS because it
presents a clean and stoichiometric material
that is well characterized (10). In the absence of
an external magnetic field, YRS shows very weak
antiferromagnetic (AF) order at TN = 70 mK,
with an ordered moment of only ~10−3mB/Yb
(11). A small magnetic field (H⊥c ≈ 0.06 T
for the field applied within the easy ab plane,
and H||c = 0.66 T along the hard c axis)
suppresses the transition temperature and
accesses the QCP (12). The ability to use

such a small magnetic field to access the QCP
makes YRS suited for our purpose; the deter-
mination of energy scales requires scanning
across the phase transition, and an external
magnetic field can be tuned with relative ease
and continuously. Hall effect measurements
(13) on YRS have shown a large and rapid
crossover in the Hall constant at a temperature-
dependent magnetic field away from the antifer-
romagnetic transition. In the zero-temperature
limit, this crossover extrapolates to a jump
across the QCP, which has been interpreted as
a large change of the Fermi surface volume.
This represents yet another advantage of mea-
suring the thermodynamic properties in YRS,
because they can be compared with their trans-
port counterparts.

We measured the isothermal linear mag-
netostriction ∂lnL /∂H, where L is the length
along the [110] direction within the tetragonal
ab plane, and the magnetic field H is applied
along the same direction (H⊥c). Figure 1 shows
the magnetostriction as a function of the
magnetic field, at temperatures ranging from
0.02 K to 0.8 K. For temperatures below
0.075 K, a clear discontinuity is observed
when suppressing the AF order by a critical
magnetic field. At T > 0.075 K, it is seen that,
for a small magnetic field, the isothermal
magnetostriction linearly depends on the mag-
netic field, as is the case in typical metals (14).
Beyond a crossover field, however, there is a
change to a high-field region with a different
slope. The crossover field decreases as the tem-
perature is reduced.

To understand this crossover, we compare it
with the field-dependent isothermal behavior of
other thermodynamic and transport quantities.
Figure 2A illustrates the similarity of the cross-
over in the magnetostriction to that seen in the
field-dependent isothermal Hall resistivity rH
(measured with H||c). The Hall coefficient was
described (13) by an empirical crossover
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Fig. 1. Magnetic-field dependence of
the magnetostriction of YbRh2Si2. The
symbols represent the linear coefficient
l[110] = ∂lnL /∂H (where L is the sample
length along the [110] direction within
the tetragonal ab plane) versus H at
various temperatures. Note that l[110] < 0
and that the data sets have been shifted
by different amounts vertically. The
sharp feature in the 0.02 K data cor-
responds to a discontinuity in l (as is
more clearly seen in the measured length
versus H, which shows a change in slope
but does not contain any discontinuity),
demonstrating the continuous nature
of the magnetic transition at the crit-
ical field of 0.05 T. Similar behavior is
observed at various different temperatures below 0.075 K, for example, at 0.03 K and 0.05 K.
The solid lines for T ≥ 0.13 K are fits using the integral of the crossover function f(H,T ), which
reveal a characteristic field scale H0(T ) along which the magnetostriction shows a drastic change
in slope.
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function of the form f(H,T ) = A2 – (A2 – A1)/[1 +
(H/H0)

p]; the crossover field scale H0(T) is
equivalent to an energy scale T*(H). We have
analyzed the magnetostriction data, as well as
the existing magnetization data (H⊥c) (15, 16),
with the same crossover function. No corre-
sponding anomalies can be resolved in the
magnetization data for H||c (16), which is
almost linear in H. The solid curves in Fig.
1 and Fig. 2A correspond to fits of l[110], M̃ ≡
M + cH and the Hall resistivity rH. Figure 2B
shows the three sets of H0(T) obtained from
such fits. Their overlap represents a key con-
clusion of the present work; it suggests that
they define one energy scale T*(H ). This scale
is seen to be distinct from either the transition
temperature (TN) for the magnetic ordering at
H < Hc or the scale (TLFL) for the es-
tablishment of the Landau Fermi liquid state
at H > Hc. For all three quantities, the width of
the crossover extrapolates to zero at T = 0,
implying that the differentials of the magneto-
striction, magnetization, and Hall resistivity
have a jump in the zero-temperature limit
(supporting online text).

The results raise the important question of
the causal relation between the thermodynamic
and electronic transport properties. One might
argue (17) that the Hall-effect evolution as a
function of the magnetic field (13) is caused by
the Zeeman splitting of the Fermi surface in-
duced by the magnetization (and reflected in the
magnetostriction). However, the magnetization
only displays a smeared kink, and the corre-
sponding Fermi surface change would at most
produce a smeared kink in the evolution of the
Hall coefficient; such a kink is too weak com-
pared with the smeared jump seen experimen-

tally. Moreover, along the c axis, even such a
smeared kink feature is absent in the magneti-
zation versus the magnetic field. Instead, it is
more natural to view the nonanalyticities in
both the magnetostriction and magnetization as
thermodynamic manifestations of the large
Fermi surface jump caused by an f-electron
localization.

To explore this issue further, we have also
studied the longitudinal magnetoresistivity.
Figure 3 shows the electrical resistivity r as a
function of the magnetic field (H⊥c), at various

temperatures. The broadened steplike decrease,
observed at all temperatures, corresponds to the
crossover observed in the other properties.
Indeed, as shown in inset A, the crossover
fields determined from the minima of the
derivative dr/dH (inset B) fall on the same
T*(H ) line determined from the magnetostric-
tion, magnetization, and Hall effect. In addition,
inset B shows that the width of the crossover
decreases as the temperature is lowered. A
detailed analysis shows that the crossover
width goes to zero in the zero-temperature

Fig. 2. Energy scales in YbRh2Si2,
determined from thermodynamic,
magnetic, and transport measure-
ments. (A) The field dependence
(H6c) of themagnetostrictionl[110],
M̃ ≡ M + cH (where c = ∂M/∂H),
and the Hall resistivity rH for H||c
(for the latter, the field values have
been divided by the anisotropy
factor 13.2, which corresponds to
the ratio of the critical fields in the
Hall and magnetostriction measure-
ments), respectively, all at T= 0.5 K;
similar behavior is observed at other
temperatures. For l[110](H6c), the
sample has a residual resistivity r0 =
0.5 mW cm and Hc = 0.05 T; for M̃ (H6c), the sample has r0 = 1.0 mW cm and
Hc = 0.06 T; and for rH(H|| c), the sample has r0 = 1.0 mW cm and Hc = 0.66 T.
The solid lines correspond to fits using the integral of the same crossover
function f(H,T) . Each data set has been normalized by its initial slope. For clarity,
the three data sets have been shifted by different amounts vertically: This is
represented by the three separate zeromarks along the vertical axis for the three
quantities. rH – rH,a, where rH,a is the anomalous Hall resistivity (13), behaves
similarly to rH. We analyzed M̃(H), which is the field derivative of the magnetic
free energy contribution (–M × H); fitting M(H) leads to similar conclusions,
although the quality of the fit is somewhat poorer because M versus H is not as

linear as M̃ at high fields (fig. S2). (B) The crossover field scale H0 as determined
from magnetostriction, M̃, and Hall resistivity using the same symbols as in A. It
is equivalent to the energy scale T*(H). The gray diamonds and triangles
represent, respectively, the Néel ordering temperature (TN) and the crossover
temperature (TLFL) ,below which the electrical resistivity has the Fermi liquid
form r = r0 + AT2, as determined from measurements on a single crystal with
r0 = 0.5 mW cm and Hc = 0.05 T. The solid and dotted lines are guides to the
eye; for the latter, data points outside the plotted field regime have also been
used. The horizontal error bars represent the fitting error rather than the width
of the crossover.
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Fig. 3. Longitudinal mag-
netoresistivity of YbRh2Si2 as
r versus H (H6c) at various
temperatures. The maxima in
the 0.03 and 0.07 K data
indicate the boundary of the
AF ordered state [TN(H = 0) =
0.075 K]. The arrows mark
the positions of inflection
points in r(H). The inset A
displays the phase diagram,
where the gray shaded area
represents the range of H0(T)
values shown in Fig. 2B.
Open yellow triangles mark
the positions of the inflec-
tion points in the longitudi-
nal electrical resistivity. The
smeared kink behavior in the
isothermal M versus H cor-
responds to a peak in the T
dependence of c. The latter has been observed (20); the corresponding peak temperature versus H for a
sample with r0 = 0.5 mW cm and Hc = 0.05 T is displayed by the dark blue diamonds and found to be
consistent withH0(T). Inset B displays the derivative dr/dH versusH at both T= 0.1 K and T= 0.3 K. Arrows
mark the minima, corresponding to the inflection points in r(H).
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limit (supporting online text), implying a jump
in the residual resistivity across the magnetic
QCP. This is in accordance with the theoretical
expectations (18, 19) associated with an f-
electron localization transition.

Figure 3, inset A, also shows the temperature
scale as a function of field, extracted from the
peak in the T-dependence of the differential sus-
ceptibility cac = ∂M/∂H; the latter, observed
earlier (20), necessarily accompanies the
smeared kink behavior in the isothermal M ver-
susH. It is clearly seen that this scale too falls on
the same T*(H) line.

Our results shed light on the overall phase
diagram of this clean stoichiometric quantum
critical material. Nuclear magnetic resonance
(NMR) measurements (21), while signaling the
dominance of AF fluctuations in the quantum
critical regime, have also revealed enhanced
ferromagnetic fluctuations. The Korringa ratio,
S = 1/T1TK

2, is small—on the order of 0.1S0,
where S0 is the corresponding ratio for non-
interacting electrons. Further evidence for
enhanced ferromagnetic fluctuations has come
from magnetization measurements (20). The
Wilson ratio—RW = pkB

2/(m0m
2
eff) × c/g, with

meff = 1.4 mB/Yb (22)—is strongly enhanced for
an extended region of the phase diagram. It is
already large (~20) for magnetic fields of a few
teslas and further increases as the field is
reduced toward Hc. Therefore, it could be
tempting to consider the q ~ 0 magnetic
fluctuation as the dominant critical fluctuation
(17), especially because a conventional ferro-
magnetic QCP would yield a Grüneisen
exponent (23) of 1/zn = 2/3, close to what is
observed in YRS (24). This picture is proble-
matic for a number of reasons, however. First,
neither three-dimensional (3D) nor 2D ferro-
magnetic spin fluctuations can generate the
fractional exponent observed in the temperature
dependence of the uniform spin susceptibility
(20). Second, ferromagnetic spin fluctuations
would lead to a divergent 1/T1 (~1/T

x, with x =
1/3 and 1/2 for 3D and 2D cases, respectively)
that is in contrast to the observation that 1/T1 is
approximately constant when the NMR mea-
surement field is extrapolated to the quantum

critical regime (11). Third, because ferro-
magnetic spin fluctuations are inefficient in af-
fecting charge transport, this picture contradicts
the observation of a nearly H-independent ratio
A/c2 that accompanies a strongly H-dependent
A and c (20). Here, A is the coefficient of the
T2 component of the resistivity.

The data presented here show that the uni-
form magnetization (q = 0) depends on the same
underlying physics as that for the charge trans-
port. Because the transport is dominated by
large q fluctuations, the results imply that the
q = 0 magnetic fluctuations are a part of
overall fluctuations in an extended range of
wave-vector scales. It is then more natural to
assume that the dynamical spin susceptibility
at different wave vectors obeys the same form
(8, 25) as that observed in another prototyp-
ical quantum critical heavy fermion metal,
CeCu5.9Au0.1 (17): c(q,T,W) ~ [Qq+T

aW(w/T)]−1.
At the QCP, the Weiss field at the antiferromag-
netic wave vector (q =Q) vanishes:QQ = 0. At
the same time, and unlike for CeCu5.9Au0.1,
Qq=0 is very small in YRS. Based on the
saturation scale seen in the temperature de-
pendence of the uniform magnetic suscep-
tibility (20) and the NMR Knight shift data
(21) near Hc, we estimate Qq = 0 to be on the
order of 0.3 K (26). When q moves away from
either 0 or Q, Qq increases to the order of the
Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teraction or bare Kondo scale [about 25 K for
YRS (10)], as illustrated in Fig. 4. The en-
hanced uniform magnetic susceptibility, the
concomitant enhanced Wilson ratio (20), and
the small S ≡ 1/T1TK

2 naturally follow from
this picture. Moreover, both cq=0 and cq=Q
scale similarly with H, and the observation
that A/c2 is nearly H-independent is in fact a
manifestation of an H-independent A/c2

Q. All
this leads to the conclusion that the origin
of the T* line lies in an electronic slowing
down and, for YRS, the strong q = 0 fluctua-
tions happen to be a consequence of the latter
as well.

We now turn to more detailed theoretical
implications of our results. Our measurements
establish that the energy scale T* is associated
with the equilibrium many-body spectrum
(which alone determines thermodynamics).
Moreover, this scale is distinct from the Landau
Fermi liquid scale, TLFL, because physical quan-
tities manifest rather different behavior across
the two scales (supporting online text). Finally,
both of these scales vanish at the QCP. These
findings contradict the conventional order-
parameter fluctuation theory in at least two
respects. First, the only low-energy scale in that
theory is associated with the magnetic slowing
down which, for H > Hc, is TLFL (2–5). Second,
within that theory, a sharp feature in thermody-
namics and transport quantities might arise near
TN only.

Our results are instead consistent with mag-
netic quantum criticality accompanied by the

destruction of Kondo entanglement. In the
form of local quantum criticality (7, 8), a col-
lapse of a large Fermi surface as H decreases
leads to an added energy scale characterizing
an electronic slowing down and, in addition,
yields a zero-temperature jump in the Hall
coefficient and in the field differentials of the
thermodynamic quantities. An additional van-
ishing energy scale also exists in the “decon-
fined” quantum criticality scenario for insulating
quantum magnets (9), as well as in its extension
to itinerant electron systems (27, 28) that are
argued to be relevant to quantum critical heavy
fermion metals.
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Fig. 4. Sketch of the suggested q dependence of
the Weiss temperature Qq, which enters the
magnetic susceptibility. As H reaches Hc, it
vanishes at the antiferromagnetic wave vector Q,
as shown. In addition, Qq has a second minimum
at q = 0. Ferromagnetic fluctuations at q = 0
remain important as Qq = Q goes to zero.
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